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Abstract

Subgrid analysisof a transitionaltemporal mixing layer

with evaporating droplets has been performed using a di-

rect numerical simulation (DNS) database. The DNS is

for a Reynolds number (based on initialvorticitythick-

ness) of 600, with droplet mass loadingof 0.2. The gas

phase iscomputed using a Eulerian formulation,with L_-

grangian droplet tracking. Since Large Eddy Simulation

(LES) of thisflow requiresthe computation of unfiltered

gas-phase variablesat droplet locationsfrom filteredga_-

phase variablesat the grid points,itisproposed to model

these by assuming the gas-phase variablesto be given by

the filteredvariablesplus a correctionbased on the filtered

standard deviation,which can be computed from the sub-

grid scale(SGS) standard deviation.This model predicts

the unfilteredvariablesat droplet locationsbetter than

simply interpolatingthe filteredvariables.Three methods

are investigatedfor modeling the SGS standard deviation:

Smagorinsky, gradient and scale-similarity.When prop-

erlycalibrated,the gradient and scale-similaritymethods

give resultsin excellentagreement with the DNS.

Introduction

Droplet-laden turbulent flows occur in many problems of

practical interest, such as spray combustion and atomiza-
tion. The interaction of particles and turbulence is an inte-

gral feature of such flows, and hence the topic of much re-

search [2][3] [5] [12]. Large Eddy Simulation (LES), in which
the flow field is spatially filtered, is emerging as a powerful

tool in modelling unsteady turbulent flows. It is expected

to be more generally applicable than Reynolds-Averaged

Navier Stokes (RANS), since the large scale structures

axe computed, and the more universal small scale struc-
tures are modelled. LES is also less computationally in-

tensive than direct numerical simulation (DNS) in which

Ml length scales are resolved, and has the additional ad-
vantage of being able to accommodate considerably larger

Reynolds numbers (Re). Whereas much research has been

devoted to LES modeling for single phase incompressible

flows, only moderate attention has been given to compress-

ible shear flows [ll[t5], with focus now turning two-phase

flows [4][tt][16]. In addition to modeling subgrid scale

(SGS) terms h)r the gas phase, an LES of a droplet-laden

flow would require modeling the unfiltered gas phase vari-
ed)los at the droplet locations. In simplistic models, the

filtered variables are substituted for the unfiltered vari-

ables; however, this assumption may be substantially in-

accurate for droplets with small Stokes numbers. With an

increasing body of DNS computations [5] [6][7][8] [13] [14], it

is now possible to assess subgrid scale quantities at mod-

erate Reynolds numbers, with good prospects for devising

subgrid scale models.
Recently, Miller and Bellan [9][10] have performed

DNS of droplet laden mixing layers. They use 'DNS' to

refer to computations in which all length scales of the

gas-phase are resolved but the effect of the gas on each

droplet is modeled using Stokes drag, and the effect of

the droplets on the gas are modeled as source terms in

the gas-phase equations. The present paper addresses the
use of the DNS database of Miller and Bellan [9] to eval-

uate subgrid scaleclosures. Specifically,we examine the

largestReynolds number (based on initialvorticitythick-

ness, 6_,0,and initialvelocity difference,AU0) of 600,

with mass loadingof0.2 (3x 10_drops) on a 300x 332 x 180

(0.25mx0.22mx0.12m) grid, which they denote as case

TP600.

Governing Equations

The governing equations for the gas phase density (p), ve-

locity (ui), total energy (E) and vapor mass fraction (Yv)

are given by:

Op+ 0
_ [_I = s_ (1)

Opus+ 0
-&- _ L_ + P_,J - _,J] = s,., (2)

apE O[ _OT_ ]+ _x: (pE + P) u: - cgxj u_i.I = SHz (3)

OpYv O [ aYv ]+ _ ,Pw": - pr_-j = s, (4)

aU = I_ + dxi 3

P = pRT (6)

E = ½u, u, + C,_T + h°Yv (7)

R = YvRv + (1 - Yv) Rc (8)

c. = YvC_.v + (t - Yv) co,c (9)



wlwr.._uhscrtpt V denotes the vapor, subscript C denotes

t.llt; carrier g.'u_, ;utd the nla._s fraction of the carrier gas is

Y_: = t - Yr.

The Lagrangian particle equations for the position

(X,), velocity (v,) temperature (Td) and mass (rod) are:

dX,
-- = v_ (10)

dt

dv_ Fi
(11)

dt ma

a,,t_r.
dT_= Q + _, -. (12)
dt maCL

Computation of the drag force F_, the heat flux Q and the

evaporation rate _t t require knowledge of the gas phase
variables (ui,T, Yv, P) at the droplet locations, and in-

volve validated relations [10].
The source terms are

St = -Z [--_t] (13)

SH.i = - Z [Fi + d-_tvi ] (14)

SHz = - _ [Fir, + Q + d_t (_v,v, + C,.vTa + h°v)]

(15)

where _ indicates appropriately weighted summations
over droplets within a discretization volume associated

with each grid point.

Filtered Governing Equations

The filtering operation is defined as:

"$(_) =/v ¢(T')G(-_ - _)dT' (16)

where G is the filter function, with the property that i = 1,

and V is the filtering volume. We use a cubic top-hat
filter, in which V is a cube of sides A, and G is simply

a volume-average. For compmmsible flow, we use Favre
filtering, defined as _ --- _/_, to simplify the notation.

After filtering, the gu phase equations become:

0_+0

0"-m_ + 0
-k- _ [_,_j + _6,, - _,, + _,,] -- _.,, (18)

%-+_ _E+ _- O_

e, O,+ : (19)

T + _ _Pv_,- or_7__ + N, : _ (20)

where

r O = u,u'--_ - _u_ (21)

o, = T,,-"-]- Ta,

% =Yv%-Yv_j

aU = _ \dx.s + dx, 3 _ o,,)

_,= f'vc,,,v+ (_- f'v)c,,,c

+ - eo
and it has been assumed that

(22)

(23)

(24)

(25)

(26)

(27)

_(_ -_,_) = -_,,_

l/,iO'i_ = uio'o

pYvT = pYv T

P = _RT

= ½_ + ,9,,_+ h_, + ½,,,

(28)

(29)

(30)

(31)

(32)

(33)

(34)

The terms that need to be modeled are the subgrid stress

vO, the subgrid heat flux Oj and the subgrid species flux

The droplet equations remain as before, except that

now the gas-phase variables (u_, T, Yv, P) at the droplet lo-

cations are no longer immediately available, and will need

to be derived from the filtered variables (_,T, Yv, P).

Thus the (unfiltered) gas-phaee variables also need to be
modeled.

Model for Instantaneous Variables

The droplet model requires modeling gas phase variables

at droplet locations. To guide the modeling, we will first

consider the known DNS generic variable ¢ and its filtered

form _, where the bar denotes Favre filtering for u_ and

Yv and regular filtering for T and P. The definition of the
standard deviation is

= (35)
Thus the relation between $ and _ is

¢ = _ + f_r (36)

where from the definition of a, f = ±1. The goal of the

modeling is to compute, from the filtered flowtield, the

form of fer that provides a better approximation to ¢ than

does fa = O. In this formulation, fa can be viewed as a

correctionto_with sign f and magnitude or.

It istempting to assume that f randomly takes on

valuesof -I and i. However, ifthe filteringoperation is

viewed as a volume average, a relationbetween _band

can be derivedas follows.Consider the third-orderTaylor



,xl)ansion of ,/_ ill the filtering volume V of size A with

(:entr¢)id at .to -- (x I,,. xz,, x3.) integrated over the volume:

_(.r.)= P _(_)dV (37)

_(_') = ¢(_0) + _-_(z0)(z,

+__ ,2, -x_)(z_-_o)+O(a 3) (38)

From the definition of the centroid T_fv(x_ - Xio) dV = o.

If v is symmetric, then

V (x, - X_o)(Xj- zjo)_ = o; i # j (39)

and

is the (positive) moment of inertia, so

(4o)

i.e. f = -sign(V2_), ct = _'. To assess this model, we will
use the "exact" _Yobtained by filtering the DNS flowfield,

and then turn our attention to modeling it based on the

filtered flowfield. The proposed model will be computed

at the grid points, and then interpolated to the droplet
locations.

Fig_ure 1 shows the probability density function(PDF)
for (_b - _b)/'_ for case TP600 at the end of the simulation.

These results were obtained using a cubic top-hat (box)
filter with filter width A = 4Ax. Notably, for all quantities

there are peaks near 1, and for the velocity components

there are also peaks near -1, similar to the PDF of (_b -

-¢)la, which takes on values of =t:1.

0.1

O£9

O_

_07

O£6

2 IoA2
(41)

where terms of O(A 3) vanish due to the symmetry of the

filtering volume.

Thus f will generally be -s/gn (V2¢). From the

available filtered quantities, we can compute V2_ rather
than V2¢; so to model f we assume that V2_ and V2_b

have the same sign. To model a, we note that for the gas

phase we will be modeling terms of the form ¢¢ - _b¢),
which are the subgrid scale fluctuations. Defining crscs as

the SGS standard deviation,

/.__._

ascs = _/_ - ¢4) • (42)

The relationship_between a and ascs can be illuminated
by considering or2:

_= (¢__2 = _- 2¢_ +_ (43)
m

We note that ¢-¢ = cr_(:s +_ and that ¢¢ can be written
in terms of the local correlation between 0band

R(_,_) = v_v/_
(44)

If we assume that R(_, _) -_ l, then

(45)
_'_2 and using _ as a model for a, we

for ¢pof the form
Defining _ =

arrive at a model

(46)
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Figure 1: PDF of (¢ - ¢)/_

Figures 2 and 3 show the comparison between inter-

polating the DNS flowfield to the droplet locations (the

"exact" quantities) and interpolating the models to the

droplet locations. Results are presented in terms of av-



,'r;u4,'s()v,r dr_q_k'tswithin a given y-interval; this aver-

aging is ,htsa)tt_'d by <<>>. First, using ¢r as given by

Equation 35, we comp,tre the models for f. It is seen

dlat f = 0 leads to significant discrepancy between the

exact _md mode[ interpolated variable. Any model with

f with mean 0 will not perform any better as the devia-

tions toward the exact value will be just as likely as the

deviations away from the exact values. This is seen in the

case where f is randomly taken to be -1 or +1, which per-

forms slightly worse than ]" = 0 despite having the exact

or. Using f = -sign(V2¢) gives significant improvement

in view of the two assumptions made i.e. f = -sign(Va4_)

and sign(V2¢) -- sign(V2_). For the data shown in Fig-

ures 2 and 3, this is true (86%, 86%, 86%, 85%, 88% and

93%) of the time for ul, u2, us, T, Yv, and P respectively.

When cr is replaced by Y (denoted [a] in the figures), with
f = -sign(V2¢), there is considerable improvement over

f -- 0, for all quantities except T, where all the models give
similar results. For T, Yv and P, S = -xign(V_) can be

:mr I
I /, /'q kL, ,

QQI ..I ,t,
i aolsF I;I _ l_',' '11

45. An alternative expression for f uses a scale-similarity

idea, i.e.

similar results to using f = -sign(_72¢) for all six vari-

ables. An analysis of the correlation R(_b, ¢) of Equation

44 showed that R = 1 for T and P, 0.97 < R < I for ul,u2

and u3 and 0.7 < R < 1 for Yr. For ul,ua and u3, the

greatest deviation from 1 was in the middle of the mixing

layer. For Yv, the greatest deviation was at the droplet-

laden/droplet-flee interface. However, even in this region,

R = 1 led to the best prediction of Yv at droplet locations

compared to smaller values.

is the only value that provides the correct Y _- 0 in the

Y

Models for Subgrid Cross-terms

For LES in the gas-phase, models are required for the

subgrid stresses _'ij = _ -u_u-#,A_heat fluxes 9j =

_uj - T_j and species fluxes r/# = Yvuj - _vvu_. For the

droplet part, models are required for the subgrid variances

Yv Yv - Yv Yv and P P- P P. Since these two sets of terms

axe of the same form, it seems reasonable and consistent

to use the same type of model for both. We consider three
models, Smagorinsky, Gradient, and Scale-Similarity [15].

Smagorinsky SGS Model

_)j= CnA2 /77_ (48)
- Pr-----_-v ">_'_'Ox---_

Y

(ie3 .......
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°° i2 ,t,

Y

Figure 2: Error in unfiltered variable model _b = _ + fa

interpolated to droplet locations

laminar freestream.Finally,we note that the error for the

approximation of Equation 46 isdetermined by that ofthe

velocitycomponents, which have the largesterrorofabout

z.5%.

f,@
replaced by f = i ifthe signed _ = V_ - _/_b_bisused .... f_mdml[-1,1}a-r .......
instead of the positive _ = V/_- of Equation __:..__.: f.O,iualol i_
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rb = -CRA " V °_.*°__x J (49)

with model constant Ca and filter width A, and where the
rate-of-strain tensor is defined as

( o_, o%) (50)

Although this is forms the basis for most SGS modeling,
it cannot be easily extended to compute the subgrid vari-
ances for T, P and Yv.

r_j = Ca_'2 _z'k azk (51)

y ej = CaA 2 aT o_j (52)
Ozk c3zk

J " I ,Orv<
.... ,--_.z_ _ = cca -E_=k__=, (_)

°_[ I:::0-..:::__,w T_,model;_--_ye=e,dedtocomputethesub_d_,_-
O.(:EgE- I--_-- f,4d'_[ol

¢1_:_[ "?l---_'---'_l_{l_,141Ydltt4_l ances for any quantity _b asA

.b

(_Cl_[r ''1_" 'N" "\_ ' '! Theoretically, CGA2 is the moment of the filtering volume,
,__,.

0,(:04.'_- ///'_- _z_--c_", ']_';; /cA 2 of Equation 40, as can be seen by integrating the

a0_-_ ----_r/,_ %y._._ square of the Taylor expansion for ¢, Equation 38, overV the filtering volume, but using filtered quantities in theV

l_ Q(_'t '__":-_:_-. ii derivatives. Thus for a cubic top-hat filter CG = _, This

l"_ _'r--'_'"/-." _...'." model has the advantage that the derivatives are alreadyQC01 available from the computation of the resolved part.

- a_ - " -o,o_ o ass a_
Y Scale-Similarity SGS Model

This model involvesrefilteringthe flow-fieldat a testfilter
-- f,0,--,,h_.,., £ _>

_" _(x)_ -_ -r

(-_ _-_)a_m:. , _ = Cs _,Yv - _Yv (57)
_1 I

o. ao:_S "/" ' Theoretically, Cs should be 1. This model is easily ex-

" -_J_x , tended to compute the subgrid variances for any quantity
Cas

, ,,..
aoco5 . ,. -x Model Coefficients

0 _'----'_,'1-( , , , i , , . . * ....._0S 0 (_0S 0_I The validation of the models involves comparing the values

Y predicted by the models to those obtained from the DNS
database. Standard deviations from Equation 42 will be

referred to as "exact". First, the correlation between the

Figure 3: Error in unfiltered variable model 4) = _ + fa "exact" and model standard deviations will be computed.

interpolated to droplet locations



Slope=VCc;Vari;dde

u, 0.4037 0.9855

,t2 0.4087 0.9847

u:_ 0.4112 0.9835
T 0.3886 0.8727

Yv 0.4155 0.9806

P 0.3980 0.9902

Combined 0.40

Correlation

Table 1: Gradient SGS Model A = 4Az

The correlationsaxe computed by averagingover homoge-

neous (xL -x3) planes

<XY>

_/_ X 2 >_ (59)
R(X,Y;x2) =

or over the whole domain

[XY] (60)
R(X,Y) =

By definitionR isbetween -I and I. Values near

1 indicate strong positivecorrelation,values near -I in-

dicatestrong negative correlation,whereas values near 0

indicate poor correlation.This allows pointwise assess-

ment of the correlations.Next, the relationshipbetween

the two variables(i.e.the model coefficient)needs to be

determined. The simplest isa constant-coe_cient model

where CR, Ca, Cs are the same for allflow variablesover

the whole (spatial,temporal) domain. In that case,the

coefficientcan be determined using a least-squaresfitto

Y = bX which leads to b = [XY]/[XX]. IfX isthe model

standard deviation and Y isthe "exact" standard devi_

tion , then b is the square root of the model coefficient.

More sophisticatedmodels would have the model coeff-

cientsas functionsof space and time.

Results

All three models were evaluated for Reynolds number of

600 and mass loading 0.2 (case TP600 of Miller and BeUan

[9]) at the end of the simulation, using cubic top-hat filters.

Figure 4 shows the subgrid scale stresses predicted by
the Smagorinsky model. It can be seen that there is little
|ocal correlation between the exact and predicted stresses.

Thus, this model was not assessed further.

Figures 5 and 6 show the plane-averaged SGS stan-
daxd deviations for ut,u2, u._ and T, Yv,P respectively.

Deviations from both models show good correlations with

the exact deviations, although the models tend to under-

predict the temperature deviations. For these figures, val-

ues of Ca = 0-42 and Cs = 0.792 were used. These values
were obtained from linear fits of the SGS standard devia-

tions, which produced the coefficients presented in Tables

l and 2.

a)
8OO
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_0 rl' \! _,/,,/' ,.:,\
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Figure 4: Subgrid stresses a)exact b)Smagorinsky c) cor-
relation
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Figure 6: Plane Averages of SGS Standard Deviations,

Temperature, Vapor Mass Fraction, and Pressure



V;tri,tl_l,. SIope=_ Correlation

Table

u l (}. 7465 0.9475

u_ 0.7772 0.9498

u:l 0.8008 0.9498

T 0.9143 0.8958

Yv 0.7856 0.9181

P 0.7350 0.9476

Combined 0.79

2: Scale-Similarity Model A = 4Ax; _ = 8Ax

Conclusions

An a priorisubgrid analysishas been conducted fora tem-

porallydeveloping mixing layerwith evaporatingdroplets.

This analysis was performed on a DNS database for

Reynolds number (based on vorticitythickness)of600 and

mass loading of 0.2. Two models for the subgrid scale

(SGS) standard deviations,the gradient and scale simi-

laxitymodels, where found to give excellentresultswhen

the model constant was properly calibrated.A model to

recoverthe unfilteredvariablesfrom the filteredvariables

was alsoexamined. In thismodel, the unfilteredvariables

are taken to be filteredvariablesplus a correctionterm

which can be computed from the SGS standard deviations.

Predictionsfor the unfilteredvariablesat the droplet lo-

cations were found to be improved compared to simply

interpolatingthe filteredvariables.Future work involves

both testingthese models on a DNS database fora higher

mass loadingand a posterioritestingofthesemodels inan
LES.
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